EVALUATION OF THE PHYTOREMEDIATION POTENTIAL OF LEMON GRASS (Cymbopogon citratus) AND VETIVER GRASS (Chrysopogon zizanioides) IN LEAD CONTAMINATED SOILS

AUTHORS

MWANSA MUKUKA DR. CHISHALA BENSON H. DR. MUTITI SAMUEL DR. UCHIDA YOSHITAKA

APPSA CONFERENCE

6TH NOVEMBER, 2017

Presentation Outline

- □ Introduction
- **Given Statement of the problem**
- □ Justification
- □ Study objectives
- **Given Study hypotheses**
- □ Materials and methods
- **Results and discussion**
- **Conclusion**
- **Recommendations**
- □ Acknowledgements
- **References**

Introduction

- The Lead (Pb) mining activities in Kabwe started at the beginning of the 20th century and continued for 90 years until 1994.
- These mining activities left a lot of heavy metal contamination in Kabwe between 600 ppm and 27000 ppm within 2 km of the mine.
- The heavy metal contamination of the soils near and adjacent the Pb mine tailings arose from;
 - \checkmark the physical dumping of the mining wastes and,
 - ✓ a large variety of industrial fumes with high heavy metals when they precipitated on the soil surface.

Introduction

- Mine metal tailings have a high concentration of toxic elements.
- These usually inhibit plant growth as most plants fail to withstand the toxicity. As such, the tailings are mostly bare.
- These tailings are prone to erosion as their top soils develop on unstable materials with low aggregation.
- An appropriate vegetation cover may reduce the erosion and immobilize toxic metals.

Statement of the Problem

- Heavy metals are a significant category of industrial pollutants due to their unique characteristics.
- The challenge of Pb contaminations in soil, also extends to include;
 - ✓ How to sustainably and cost effectively, remove the heavy metal contaminants.
 - ✓ How to dispose of the extracted heavy metals safely and,
 - ✓ Pb tolerant plants to use for revegetation of Pb contaminated soils.
- ***** Most of the known phytoremediators are expensive to manage.
 - ✓ They have a lot of nutritional, water and re-planting requirements e.g. Chinese cabbage and sunflower.

Justification

- Vetiver and lemon grass are able to grow and thrive in many conditions inclusive of floods and droughts.
- These grasses do not necessarily require re-planting every year and are able to regain their growth vigor with rainfall once established.
- And since they're not directly edible, it poses no significant threat for re-introduction into the active environment.
- Vetiver grass is mostly used for soil erosion controls and soil stability exercises.
 - ✓ However, little work has been done in Zambia to assess its phytoremediation potential for use in Pb contaminated soils.

Study Objectives

Main Objective

✓ To evaluate the growth response and Pb uptake of vetiver and lemon grass in Pb contaminated soil.

Specific Objectives

- \checkmark To determine the uptake and distribution of Pb in vetiver grass.
- \checkmark To determine the uptake and distribution of Pb in lemon grass.
- \checkmark To evaluate the growth response of vetiver grass to Pb contamination.
- ✓ To evaluate the growth response of lemon grass to Pb contamination.

Study Site;

✓ The experiment was done at the University of Zambia, Great East Road Campus, School of Agricultural Sciences, Soil Science Department; under greenhouse conditions. The soil samples were collected from Kabwe.

Table 1: Standard methods of Analysis

PARAMETER	METHOD (SOIL)	METHOD(PLANTS)
рН	0.01MCaCl2	N/A
Electrical Conductivity	Potentiometric	N/A
Ca, Mg, Na, K	Ammonium Acetate	Dry ashing
Total Nitrogen	Kjeldahl	Kjeldahl
Phosphorous	Bray 1	Bray 1
Cu, Zn, Fe, Pb	DTPA	Dry ashing
Organic matter	Walkley % Black	N/A
Total Pb	Aqua Regia	N/A
Bulk density	Core ring	N/A
Texture	Hydrometer	N/A

Standard methods were used to analyze the physical-chemical properties of the soil using the Analyst PerkinElmer 400-AAS.

- The vetiver and lemon grass (obtained from Chongwe area), was cut to a uniform height of 13 cm and 10 cm before planting.
- The treatments were replicated four times with each pot having 7 Kg of soil.
- The plants were grown for 120 days.

- The experimental design was Randomized Complete Block Design (RCBD).
- The data collected was analyzed using Analysis of Variance (ANOVA) to determine the effect of Pb on the plants.
- All tests were done at 95% confidence interval (or P ≤ 0.05 for significant difference).
- ✤ Mean separation was done using Duncan's Multiple range test.
- ✤ The GenStat version 18 software package was used in the analysis.

Table 2: General properties of the Pb and Zn mine tailings

PROPERTY	CONTROL	SITE 1	SITE 2	SITE 3	SITE 4	SITE 5
Soil texture	Loam	Sandy loam	Sandy loam	Loamy sand	Loamy sand	Loamy sand
Bulk density (g/cm ³)	1.4	1.1	1.4	1	1	1
рН	4.76	4.82	5.15	4.73	4.52	5.07
EC (mS/cm)	0.10	0.08	0.06	0.55	0.13	0.27
CEC (cmol/kg)	1.29	4.75	3.57	7.71	5.08	2.56
ESP	1.51	5.21	5.41	2.05	4.94	4.75
%O.M.	2.76	0.37	2.21	1.39	1.37	0.73
Pb _{total} (mg/kg)	0.00	3223.30	2701.70	30966.00	5823.30	20773.00
Pb _{DTPA} (mg/kg)	0.00	865.50	720.50	1587.70	1510.00	1551.80
%N _{total}	0.66	0.45	0.39	0.35	0.21	0.27
P (mg/kg)	18.70	1.46	16.57	1.02	0.83	1.40
K (cmol/kg)	0.76	0.46	0.73	0.30	0.37	0.24
Ca (cmol/kg)	0.32	3.67	2.02	6.63	4.21	1.89
Mg (cmol/kg)	0.19	0.34	0.58	0.61	0.21	0.27
Ca: Mg ratio	1.70	10.77	3.46	10.87	20.15	7.02
Zn (mg/kg)	1.63	8.47	12.53	14.75	12.53	16.20
Fe (mg/kg)	10.74	6.23	2.62	3.97	6.03	4.20
Cu (mg/kg)	1.39	1.67	3.07	12.43	12.35	12.02

Table 4: Lead content of vetiver grass and lemon grass

Site	DTPA extractable Pb in soil (mg/kg)	Vetiver grass (%Pb) shoots	Vetiver grass (%Pb) roots	Lemon grass (%Pb) shoots	Lemon grass (%Pb) roots
Control	0.00 ^e	0.0 ⁱ	0.0 ^p	0.00 ^f	0.0 ^p
Site 1	865.50 ^d	0.02 ^f	0.10 ^q	0.00 ^f	0.30 ^q
Site 2	720.50 ^c	0.02 ^f	0.06 ^r	0.02 ^g	0.01 ^p
Site 3	1587.70 ^a	0.29 ^h	0.46 ⁿ	0.13 ^h	0.73 ⁿ
Site 4	1510.00 ^a	0.08 ^g	0.21 ^m	0.02 ^g	0.22 ^m
Site 5	1551.80 ^b	0.11 ^j	0.41 ^k	0.04 ^j	0.64 ^k
	Mean	0.10	0.25	0.04	0.38

Note: Values in the same column with the same superscripts are not statistically different at 95% C.I. (P > 0.05)

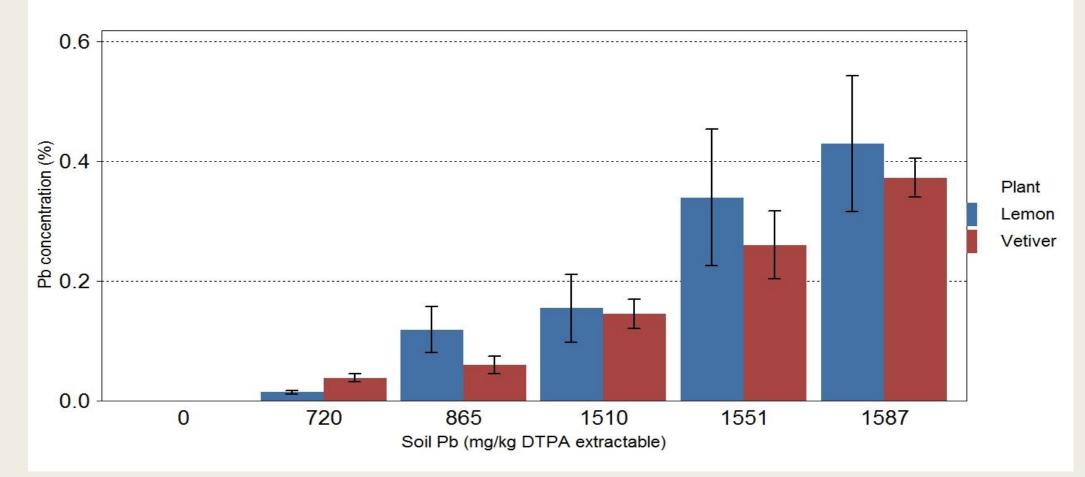
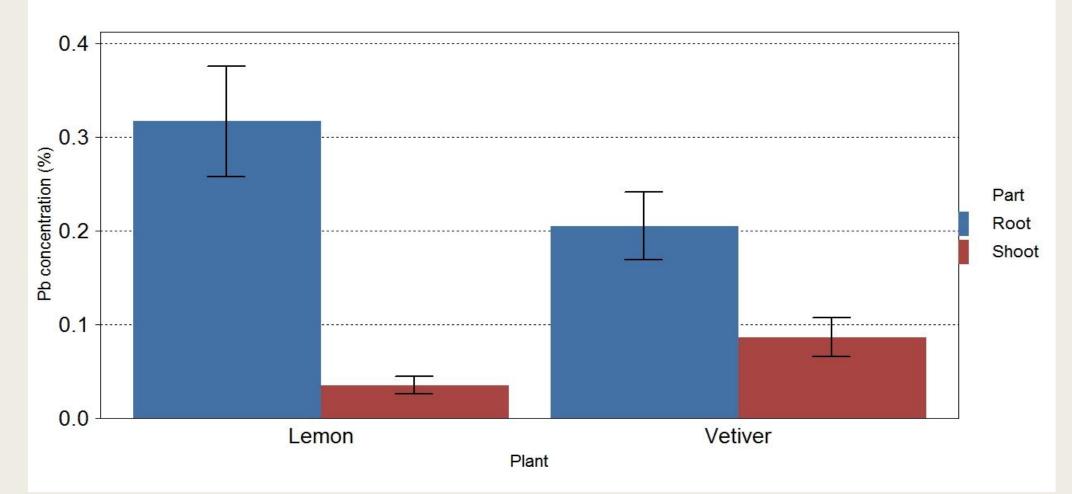



Figure 2: Pb uptake by vetiver and lemon grasses

Table 5: Pb distribution efficiency in vetiver and lemon grass

	V	/etiver gra		Lemon grass		
Sample Site	TF	BAF	BCF	TF	BAF	BCF
control	0	0	0	0	0	0
Site 1	0.21	0.24	1.14	0.02	0.06	3.51
Site 2	0.37	0.29	0.77	3.46	0.30	0.09
Site 3	0.63	1.81	2.88	0.18	0.82	4.59
Site 4	0.38	0.53	1.38	0.08	0.11	1.46
Site 5	0.27	0.71	2.64	0.06	0.24	4.13
Mean	0.37	0.72	1.76	0.76	0.31	2.76

	CONTR	ROL	SITE 1		SITE 2		SITE 3		SITE 4		SITE 5	
	LG	VG	LG	VG	LG	VG	LG	VG	LG	VG	LG	VG
%N _{total}	0.14 ^f	0.09ª	0.09 ^g	0.04 ^e	0.11 ⁱ	0.03 ^b	0.06 ^h	0.05°	0.09 ^g	0.07 ^d	0.09 ^g	0.07 ^d
%P	0.12 ª	0.36°	0.10 ^b	0.07 ^f	0.09°	0.08 ^g	0.10 ^b	0.07 ^h	0.06 ^d	0.07 ^h	0.06 ^d	0.05 ⁱ
%K	1.23 ^f	1.50 ^j	1.09 ^h	1.41 ^j	0.96 ⁱ	1.43 ^j	1.15 ^g	1.06 ^k	1.11 ^{gh}	1.01 ^k	0.91 ⁱ	1.01 ^k
%Ca	1 .98 ^j	0.90 ⁿ	6.10 ^g	2.94 ^{km}	3.88 ^h	2.90 ^{km}	3.82 ^h	3.47 ^k	4.00 ^h	2.64 ^m	1. 98 ⁱ	2.91 ^{km}
%Mg	0.60ª	0.42 ⁱ	0.53 ^b	0.48 ^h	0.60ª	0.62 ^f	0.39°	0.47 ^h	0.53 [♭]	0.37 ^j	0.50 ^b	0.57 ^g
%Zn	8.86E-03 ^k	7.90E-03 ^r	1.00E-02 ^j	2.91E-02q	4.75E-02 ^g	6.99 E-02 ^m	6.05E-02 ^f	5.36E-02 ^p	4.01E-02 ^h	6.28E-02 ⁿ	4.97E-02 ^g	5.44E-02 ^p
%Fe	3.03E-02 ^m	5.42E-02 ^t	1.06E-01 ^k	3.23E-01ª	1.10E-01 ^{jk}	2.79E-01⁵	2.42E-01 ^g	3.09E-01'	1.66E-01 ^h	3.30E-01 ^p	1.35E-01 ^j	3.43E-01 ⁿ
%Cu	4.15E-03 ^f	2.10E-03 ^p	1.09E-03 ⁱ	1.39E-039	3.99E-03 ^f	1.75E-03'	1.42E-03 ^h	3.55E-03 ⁿ	1.94E-03 ^g	5.02E-03 ^m	8.13E-04 ^j	8.88E-03 ^j
NO	re:											

Table 6: General nutritional content of lemon grass and vetiver grass

•Values with the same superscripts in the same row are statistically the same at 95% confidence interval (C.I.) (P > 0.05)

LG = Lemon grass

VG = Vetiver grass

 $E = X 10^{(n)}$; where n is the stated number

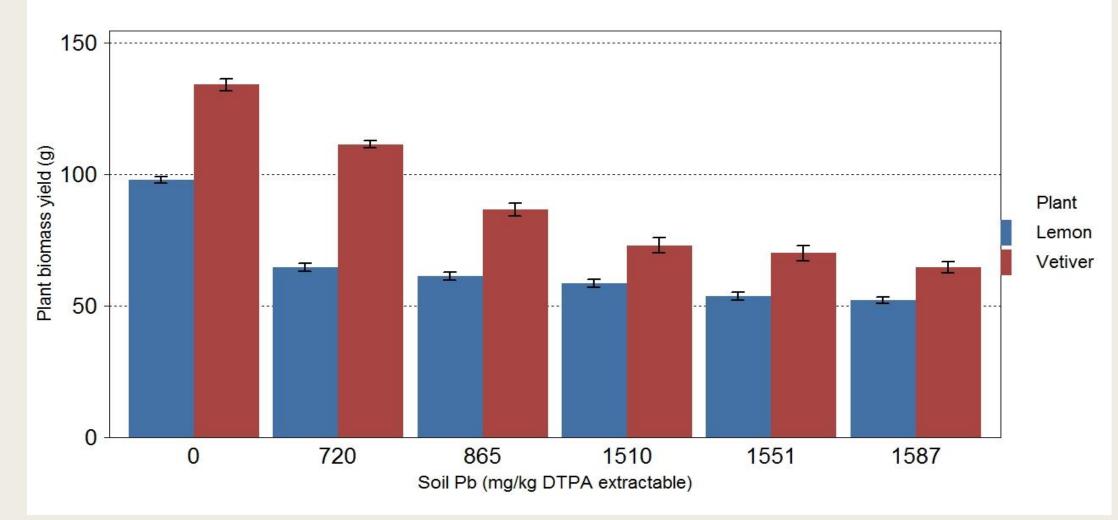


Figure 4: Biomass yield of vetiver and lemon grass in soil Pb



Figure 5: Vetiver grass shoot at harvest

Figure 6: Lemon grass shoot at harvest

Figure 7: Vetiver grass roots at harvest

Figure 8: Lemon grass roots at harvest

Conclusions

- The study established that both vetiver and lemon grass can grow in Pb contaminated soils.
- There was a decrease in biomass yield in vetiver and lemon grass with the increase in the Pb in the soil.
- The grasses were able to produce a substantial amount of root system despite the high levels of Pb, low pH, low O.M. content and low soil nutrition.

Conclusions

- ✤ Both lemon grass and vetiver grass took up Pb.
- Both lemon and vetiver grasses accumulated more Pb in the roots than the shoots (BAF < 1, BCF > 1).
- However, lemon grass translocated more Pb to the shoots than did vetiver grass (TF lemon grass > TF vetiver).
- Lemon grass accumulated an average of 0.38% Pb in the roots, and 0.04% Pb in the shoot.
- Vetiver grass accumulated an average of 0.25% Pb in the roots and 0.10% Pb in the shoots.
- Both lemon and vetiver grass can be used for phytostabilisation and revegetation.

Recommendation

- The ability to withstand the Pb toxicity and grow in the low fertility soil environment of the Pb tailing soils, makes vetiver and lemon grass a viable option for revegetation of the said place.
- With its fibrous and deep reaching root system, vetiver will be able to retain moisture in the soil, which may, in turn promote microbial and vegetative growth.
- The high amounts of Pb it accumulated in the roots (BCF > 1) by both vetiver and lemon grass also entails their ability to phytostabilise the Pb-contaminated mine tailings.
- Moreover, because both plants are not directly edible and may not necessarily require nutritional supplementation, they may be the sustainable green solution for the Pb/ Zn bare mine tailing of Kabwe and others.

Acknowledgements

✤ JICA and APPSA for the material and financial support.

THE END

THANK YOU ALL FOR YOUR TIME AND ATTENTION